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Аннотация
Уравнение Кеплера служит для нахождения положения тела на 

орбите. Оно является трансцендентным и для его решения исполь-
зуются как численные, так и аналитические методы. В этой работе 
решения уравнения путём разложения в ряд Фурье, методом простых 
итераций, методом Ньютона сравниваются с решением, даваемым 
гиперфункцией Ламбера. Показано, что наиболее быстрым по вре-
мени является метод Ньютона, а наиболее медленным – решение с 
помощью ряда Фурье.
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Abstract
The Kepler equation is used to find the position of a body in orbit. It 

is transcendental and both numerical and analytical methods are used to 
solve it. In this paper, the solutions of the equation by Fourier series expan-
sion, simple iteration method, and Newton’s method are compared with 
the solution given by the Lambert hyperfunction It is shown that the fastest 
in time is Newton’s method and the slowest is the Fourier series solution.
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Введение
Уравнение Кеплера [3], устанавливая связь между средней ано-

малией и эксцентрической аномалией, служит для описания дви-
жения по эллиптическим орбитам в задаче двух тел. Высокая точ-
ность решения уравнения Кеплера – необходимое условие для его 
применения. Но в силу его трансцендентности и нелинейности 
возникает потребность в поиске эффективных численных и чис-
ленно-аналитических методов его решения. Обзор существующих 
методов решения и история их возникновения освещены в [4]. Тем 
не менее, актуальным является исследование и получение более 
точных численных решений [1]. Новым аналитическим методом 
является применение гиперфункции Ламберта [2, 6, 7]. В данной 
работе этот метод решения уравнения Кеплера анализируется и 
сравнивается с традиционными, такими как метод касательных 
Ньютона, метод простых итераций, разложение в ряд Фурье по 
функциям Бесселя.

Решение уравнения Кеплера с помощью 
гиперфункции Ламберта
Проблему, связанную с функцией, обратной к комплексной 

функции , рассматривал Иоганн Ламберт в 1758 году. В ка-
честве самостоятельной функции она была введена в системе ком-
пьютерной алгебры Maple, где получила обозначение LambertW 
[5]. Обобщением функции Ламберта является гиперфункция Лам-
берта , введённая в работах Galidakis [6, 7]. Она применена к 
решению трансцендентного уравнения Кеплера

                                      (1)
где Е – эксцентрическая аномалия тела, движущегося по эллипти-
ческой орбите, ε – эксцентриситет орбиты, М – средняя аномалия. 
Решение имеет вид [2, 7]:

                       (2)
Для вычисления значений гиперфункции Ламберта мы приме-

ним алгоритм, данный в работе [7]. Опишем этот алгоритм.
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1. Использование обратной функции. Определим обратную 
функцию  для гиперфункции (2):

.       (3)
2. Разложение в полином Тейлора. Нужно разложить функцию 

U в ряд Тейлора. Берутся первые (n+1) членов ряда, которые дают 
полином Тейлора:

 ,                            (4)

где  – это k-я производная функции U, вычисленная в точ-
ке . 

3. Численное решение полинома Тейлора. Находятся n корней 
полинома .

Среди них существует действительный корень E0 тот, для кото-
рого  ближе всего к нулю. 

4. Использование метода Ньютона для дальнейшего улучшения 
точности найденного корня E0. Начальным приближением явля-
ется либо E0, либо можно взять то, которое указано в работе [1].

Другие алгоритмы решения уравнения Кеплера
1. Разложение в ряд Фурье по функциям Бесселя. В работe [3] 

даётся вывод представления E в виде ряда Фурье по функциям 
Бесселя:
 ,  (5)

Полученный ряд Фурье абсолютно и равномерно сходится для 
всех действительных значений средней аномалии и при значениях 
эксцентриситета 

0< ε < L, где L =0.6627434196… – предел Лапласа [3].
2. Метод Ньютона. Итеративный процесс имеет вид: 

                 (6)

где  – производная функции  (3) по E в точке 
 Эта итерация повторяется до тех пор, пока не будет полу-

чена желаемая точность : 
                               (7) 
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3. Метод простых итераций. Последовательность, заданная 
рекуррентным соотношением 

En+1 = εsin En + M.                                         (8) 
сходится к корню уравнения Кеплера E*, если эксцентриситет меньше 
единицы. В качестве начального приближения берётся корень поли-
нома (4) E0. При этом для оценки точности используется формула (7). 

Вычисления и сравнение полученных решений
Для проведения сравнительного анализа методов решения урав-

нения Кеплера, таких как ряд Фурье, метод Ньютона, метод про-
стых итераций, метод с использованием гиперфункции Ламберта 
было разработано специализированное программное обеспечение 
на языке Python. Вычисления проводились с использованием про-
цессора AMD Ryzen 5 5500 4.2 ГГц. В каждом из методов вычис-
лялось значение эксцентрической аномалии E для 100 значений 
средней аномалии M, равномерно распределенных в интервале от 
0 до 2π, и при различных значениях эксцентриситета ε (0.1, 0.2, 0.3, 
0.4, 0.5, 0.6, 0.7, 0.8 и 0.99) и различной точностью вычислений.

Методом с использованием ряда Фурье с float числами были 
вычислены значения для n членов ряда, где n от 1 до 65. Из табл. 
1 видно, что средняя точность вычисления E растет медленнее, 
чем время выполнения. Для реализации с float максимальным ста-
бильным n оказалось 65. Это связано с тем, что при вычислении 
функций Бесселя выполняется возведение в степень n2 и поэтому 
происходит переполнение числа с плавающей точкой float. 

Таблица 1.
Количество членов ряда, среднее время, средняя точность вычисления 

E для ряда Фурье с использованием чисел float
Ко-во

членов 
ряда

Cреднее 
время 

счёта, с.

Средняя 
точность, 

рад.

Кол-во
членов 

ряда

Cреднее 
время 

счёта, с.

Средняя 
точность, 

рад.
3 0.0000077 2 × 10−2 20 1 × 10−3 3.3 × 10−2

7 0.0000233 7 × 10−3 35 6 × 10−4 1.6 × 10−2

10 0.0000477 4 × 10−3 50 4 × 10−4 1.4 × 10−2

15 0.0001411 2 × 10−3 65 2 × 10−4 7.9 × 10−3
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Для реализации с типом числа с заданной точностью n было 
от 1 до 100.

Реализация этого метода для этого типа числа для 100 членов 
ряда показала следующие результаты: среднее время 4.978486 с., 
средняя точность 0.000196 рад. Очевидно, что данный метод при 
таких больших значениях n неэффективен. На рис. 1 показана за-
висимость точности от M для ε = 0.99. А на рис. 2 показана зави-
симость средней точности вычисления E от эксцентриситета ε: она 
падает при увеличении ε. Действительно, для малых значений экс-
центриситета данный метод может находить E с большой точно-
стью, например, для ε = 0.2 среднее время выполнения 0.00016 с., 
а точность 10–12. Таким образом, данный метод можно рассматри-
вать для использования в вычислительных задачах с маленьким 
эксцентриситетом. 

                 Рис. 1                                                         Рис. 2 

Метод простых итераций был проверен для точности от 10−2 
до 10−20 и для различного количества итераций: 100, 1000, 10000, 
100000, 1000000. Анализируя табл. 2, можно сделать вывод о том, 
что данный метод показывает намного более высокую точность 
вычисления Е за то же время, в сравнении с прошлым методом. Как 
и у предыдущего метода при увеличении ε падает точность (рис. 3), 
но в методе простых итераций точность зависит также не только от 
эксцентриситета, но и от M: на рис. 4 видно, что точность падает 
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и возрастает при приближении к π. Тем не менее, метод имеет вы-
сокую эффективность для точности 10−16 (табл. 2).

Таблица 2.
Среднее время, средняя точность и минимальная точность вычисления Е 

для метода простых итераций

Кол-во итераций Cреднее время, 
с.

Средняя 
точность, рад.

Минимальная 
точность, рад.

10 0.000004 9 × 10−3 2.9× 10−1

100 0.000006 4 × 10−4 4.0 × 10−2

1000 0.000109 6 × 10−9 1.2 × 10−6

10000 0.001108 1 × 10−16 3.8× 10−14

100000 0.011 1 × 10−16 3.8× 10−14

1000000 0.1067 1 × 10−16 3.8× 10−14

                   Рис. 3                                                                  Рис. 4

Метод Ньютона выполнялся до достижения разных значений 
точности (табл. 3). Он оказался самым быстрым для любых зна-
чений точности. Анализируя рис. 5 (числа 25 и 30 означают точ-
ность 10–25 и 10–30) можно заметить, что для больших значений 
эксцентриситета ε эксцентрическая аномалия E вычисляется мед-
леннее, чем для маленьких. Но скорость вычисления практически 
не зависит от M. Дополнительно, для метода Ньютона и метода с 
использованием гиперфункции Ламберта были проверены более 
высокие уровни точности: 10–17, 10–20, 10–25 радиан. 

Тщательный анализ применения метода Ньютона для полу-
чения решение уравнения Кеплера с машинной точностью дан 
в [1].
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Таблица 3.
Среднее время cчёта Е для разной точности в методе Ньютона                           

и с использованием функции Ламберта

Точ-
ность 
рад.

Среднее 
время cчёта 
для метода 
Ньютона, с.

Среднее вре-
мя cчёта для 

гиперфункции 
Ламберта, с.

Точ-
ность 
рад.

Среднее вре-
мя cчёта для 
метода Нью-

тона, с.

Среднее вре-
мя cчёта для 

гиперфункции 
Ламберта, с.

10–3 0.000008 0.032523 10–14 0.000080 0.035379
10–4 0.000004 0.032866 10–17 0.011300 0.040174
10–5 0.000008 0.033539 10–20 0.010871 0.040319
10–8  0.000004 0.034705 10–25 0.012521 0.041354
10–10 0.000013 0.034973 10–30 0.014000 0.041444
10–12 0.000013 0.035072 10–50 0.014408 0.048196

                   Рис. 5                                                               Рис. 6

При тесте метода, основанного на вычислении гиперфункции 
Ламберта, для ряда Тейлора n было от 2 до 100, максимальное коли-
чество итераций у метода Ньютона было 100000, а точность задава-
лась от 10–2 до 10–50 рад. На рис. 6 видно (числа 5,10, 15, 20 в первой 
строке под рисунком означают число членов ряда Тейлора, а ниже 
числа 5,10,17,20 означают точность 10–5, …, 10–20 рад. соответствен-
но), что при увеличении числа членов ряда Тейлора среднее время 
вычисления E для одной и той же точности увеличивается. Средняя 
время практически не зависит от значения эксцентриситета ε.

Заключение
Анализируя все методы, можно сделать вывод о том, что исполь-

зование гиперфункции Ламберта для решения уравнения Кеплера не 
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является эффективным подходом. Такой численно-аналитический 
метод эффективнее метода с использованием ряда Фурье. Послед-
ний имеет меньшую точность при одинаковых временных затратах. 
Но метод с гиперфункцией Ламберта проигрывает численным ме-
тодам Ньютона и простых итераций. Это можно объяснить тем, что 
для построения и нахождения корней полинома Тейлора тратится 
большое количество вычислительных ресурсов как при нахождении 
производных, так и при нахождении корней полинома Тейлора. Так-
же в используемой библиотеке SymPy даже для вычислений с ма-
ленькой точностью используются числовые типы данных, которые 
менее эффективны, чем числа с плавающей точкой. 
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